Defines a 2d shape plane using paths.
Methods
public absarc( aX: number , aY: number , aRadius: number , aStartAngle: number , aEndAngle: number , aClockwise: boolean )
Parameters
aX: number
aY: number
aRadius: number
aStartAngle: number
aEndAngle: number
aClockwise: boolean
public absellipse( aX: number , aY: number , xRadius: number , yRadius: number , aStartAngle: number , aEndAngle: number , aClockwise: boolean )
Parameters
aX: number
aY: number
xRadius: number
yRadius: number
aStartAngle: number
aEndAngle: number
aClockwise: boolean
public add( curve: Curve )
Parameters
public addWrapPath( bendpath: Path )
Parameters
public arc( aX: number , aY: number , aRadius: number , aStartAngle: number , aEndAngle: number , aClockwise: boolean )
Inherited from
Path .arc
Defined in three.d.ts:5044
Parameters
aX: number
aY: number
aRadius: number
aStartAngle: number
aEndAngle: number
aClockwise: boolean
public bezierCurveTo( aCP1x: number , aCP1y: number , aCP2x: number , aCP2y: number , aX: number , aY: number )
Parameters
aCP1x: number
aCP1y: number
aCP2x: number
aCP2y: number
aX: number
aY: number
public checkConnection( ) : boolean
Returns
boolean
public createPointsGeometry( divisions: number ) : Geometry
Parameters
Returns
Geometry
public createSpacedPointsGeometry( divisions: number ) : Geometry
Parameters
Returns
Geometry
public ellipse( aX: number , aY: number , xRadius: number , yRadius: number , aStartAngle: number , aEndAngle: number , aClockwise: boolean )
Parameters
aX: number
aY: number
xRadius: number
yRadius: number
aStartAngle: number
aEndAngle: number
aClockwise: boolean
public extractAllPoints( divisions: number ) : { shape: THREE.Vector2[]; holes: THREE.Vector2[][]; }
Defined in three.d.ts:5060
Parameters
Returns
{ shape: THREE.Vector2[]; holes: THREE.Vector2[][]; }
public extractAllSpacedPoints( divisions: Vector2 ) : { shape: THREE.Vector2[]; holes: THREE.Vector2[][]; }
Defined in three.d.ts:5066
Parameters
Returns
{ shape: THREE.Vector2[]; holes: THREE.Vector2[][]; }
public extractPoints( divisions: number ) : Vector2 []
Defined in three.d.ts:5065
Parameters
Returns
Vector2 []
public fromPoints( vectors: Vector2 [] )
Parameters
public getCurveLengths( ) : number
Returns
number
public getLength( ) : number
Get total curve arc length
Returns
number
public getLengths( divisions?: number ) : Array<number>
Get list of cumulative segment lengths
Parameters
divisions?: number optional
Returns
Array<number>
public getPoint( t: number ) : Vector
Returns a vector for point t of the curve where t is between 0 and 1
getPoint(t: number): T;
Parameters
Returns
Vector
public getPointAt( u: number ) : Vector
Returns a vector for point at relative position in curve according to arc length
getPointAt(u: number): T;
Parameters
Returns
Vector
public getPoints( divisions?: number ) : Vector []
Get sequence of points using getPoint( t )
getPoints(divisions?: number): T[];
Parameters
divisions?: number optional
Returns
Vector []
public getPointsHoles( divisions: number ) : Array<THREE.Vector2[]>
Defined in three.d.ts:5070
Parameters
Returns
Array<THREE.Vector2[]>
public getSpacedPoints( divisions?: number ) : Vector []
Get sequence of equi-spaced points using getPointAt( u )
getSpacedPoints(divisions?: number): T[];
Parameters
divisions?: number optional
Returns
Vector []
public getSpacedPointsHoles( divisions: number ) : Array<THREE.Vector2[]>
Defined in three.d.ts:5071
Parameters
Returns
Array<THREE.Vector2[]>
public getTangent( t: number ) : Vector
Returns a unit vector tangent at t. If the subclassed curve do not implement its tangent derivation, 2 points a small delta apart will be used to find its gradient which seems to give a reasonable approximation
getTangent(t: number): T;
Parameters
Returns
Vector
public getTangentAt( u: number ) : Vector
Returns tangent at equidistance point u on the curve
getTangentAt(u: number): T;
Parameters
Returns
Vector
public getTransformedPoints( segments: number , bends?: Path ) : Vector2 []
Parameters
segments: number
bends?: Path optional
Returns
Vector2 []
public getTransformedSpacedPoints( segments: number , bends?: Path [] ) : Vector2 []
Parameters
segments: number
bends?: Path [] optional
Returns
Vector2 []
public getUtoTmapping( u: number , distance: number ) : number
Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance
Parameters
u: number
distance: number
Returns
number
public lineTo( x: number , y: number )
Parameters
public moveTo( x: number , y: number )
Parameters
public quadraticCurveTo( aCPx: number , aCPy: number , aX: number , aY: number )
Parameters
aCPx: number
aCPy: number
aX: number
aY: number
public splineThru( pts: Vector2 [] )
Parameters
public updateArcLengths( )
Update the cumlative segment distance cache